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Abstract
We consider a Fabry–Perot cavity made by two moving mirrors and driven by
an intense classical laser field. We show that stationary entanglement between
two vibrational modes of the mirrors, with an effective mass of the order of
micrograms, can be generated by means of radiation pressure. The resulting
entanglement is however quite fragile with respect to temperature.

PACS numbers: 03.67.Mn, 42.50.Lc, 05.40.Jc

1. Introduction

Quantum entanglement is a physical phenomenon in which the quantum states of two or more
systems can only be described with reference to each other. It is now intensively studied not
just because of its critical role in setting the boundary between classical and quantum worlds,
but also because it is an important physical resource that allows us to perform communication
and computation tasks with an efficiency which is not achievable classically [1]. In particular,
both from a conceptual and a practical point of view, it is important to investigate under which
conditions entanglement between macroscopic objects, each containing a large number of the
constituents, can arise. Entanglement between two atomic ensembles has been successfully
demonstrated in [2] by sending pulses of coherent light through two atomic vapour cells. More
recently, Berkley et al [3] have shown spectroscopic evidence for the creation of entangled
macroscopic quantum states in two current-biased Josephson-junction qubits coupled by a
capacitor. The interest has been also extended to micro- and nano-mechanical oscillators,
which have been shown to be highly controllable [4] and represent natural candidates for
quantum limited measurements and for testing decoherence theories [5]. Recent proposals
suggested to entangle a nano-mechanical oscillator with a Cooper-pair box [6], arrays of
nano-mechanical oscillators [7], two mirrors of an optical ring cavity [8] or two mirrors of two
different cavities illuminated with entangled light beams [9]. These two latter proposals
employed the optomechanical coupling provided by radiation pressure, which has been
demonstrated to provide a useful tool to manipulate the quantum state of light [10–16].
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Figure 1. Schematic description of the system under study. The cavity (with mode a) is driven by
a laser, and the vibrating mirrors 1 and 2 are the ones we want to entangle.

Here we study the simplest scheme in which one can test the entangling capabilities of
radiation pressure, that is, a linear Fabry–Perot cavity with two vibrating mirrors (see figure 1).
This system corresponds to a simplified version of the system of [17], where a double-cavity
set-up formed by a linear Fabry–Perot cavity and a ‘folded’ ring cavity is considered. Similar
to what has been done in [17], we determine here the exact steady state of the system and show
that if the cavity is appropriately detuned, one can generate stationary entanglement between
macroscopic oscillators (effective mass ∼100 ng). As will be discussed below, the main
advantages of the present scheme with respect to that of [17] are its simplicity and the fact that
steady-state entanglement is achievable even with purely classical driving light, while Pinard
et al [17] considered the limiting case of large mechanical frequencies where entanglement
can be generated only by injecting nonclassical squeezed light into the two cavities.

The paper is organized as follows. In section 2 we describe the dynamics of the system
in terms of quantum Langevin equations. In section 3 we solve the dynamics and derive the
correlation matrix of the steady state of the system. In section 4 we quantify the mechanical
entanglement in terms of the logarithmic negativity, while in section 5 we compare the present
scheme with other recent proposals for the generation of mechanical entanglement and discuss
how one can detect it. Section 6 is for concluding remarks.

2. The system

We consider an optical Fabry–Perot cavity in which both mirrors can move under the effect
of the radiation pressure force (see figure 1). The motion of each mirror is described by the
excitation of several degrees of freedom which have different resonant frequencies. However,
a single frequency mode can be considered for each mirror when a bandpass filter in the
detection scheme is used [19] and mode–mode coupling is negligible. Therefore we will
consider a single mechanical mode for each mirror, modelled as an harmonic oscillator with
frequency �k and effective mass Mk, k = 1, 2, so that the mechanical Hamiltonian of the
mirrors is given by

Hm = P 2
1

2M1
+

P 2
2

2M2
+

1

2
M1�

2
1Q

2
1 +

1

2
M2�

2
2P

2
2 , (1)

with [Qk, Pj ] = ih̄δkj . In the adiabatic limit in which the mirror frequencies are much smaller
than the cavity-free spectral range c/2L (L is the cavity length in the absence of the intracavity
field) [20], one can focus on one cavity mode only because photon scattering into other modes
can be neglected, and one has the following total Hamiltonian:

H = Hm + h̄ωca
†a + h̄

ωc

L
a†a(Q1 − Q2) + ıh̄E(e−ıωLta† − eıωLta), (2)

where a and a† ([a, a†] = 1) are the annihilation and creation operators of the cavity mode
with frequency ωc and decay rate κ , and the last two terms in equation (2) describe the driving
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laser with frequency ωL and E is related to the input laser power P by |E| = √
2Pκ/h̄ωL.

In general the mirror potential is also determined by the additional static Casimir term
VCas = −h̄π/ [24(Q2 − Q1 + L)] [20], which however is negligible for typical optical cavities
with L ∼ 1 cm and mirrors with effective masses in the µg–ng range.

The full dynamics of the system is described by a set of nonlinear Langevin equations,
including the effects of vacuum radiation noise and the quantum Brownian noise acting on the
mirrors. In the interaction picture with respect to h̄ωLa†a,

ȧ = −(κ + i�0)a − i
ωc

L
a(Q1 − Q2) + E +

√
2κ1a

in, (3)

Q̇k = Pk/Mk, k = 1, 2, (4)

Ṗk = −Mk�
2
kQk − γkPk + (−1)kh̄

ωc

L
a†a + MkWk, k = 1, 2, (5)

where �0 = ωc − ωL and γk is the mechanical damping rate of mirror k. We have introduced
the radiation input noise ain(t), whose only nonzero correlation function is [21]

〈ain(t)ain,†(t ′)〉 = δ(t − t ′), (6)

and the Hermitian Brownian noise operators Wj(t), with a zero-mean value and possessing
the following correlation functions [22, 23]:

〈Wi(t)Wj (t
′)〉 = δij

h̄γj

Mj

∫ ∞

−∞

dω

2π
e−iω(t−t ′)ω

[
coth

(
h̄ω

2kBT

)
+ 1

]
, (7)

where kB is the Boltzmann constant and T is the equilibrium temperature, assumed to be equal
for the two mirrors.

We are interested in the dynamics of the quantum fluctuations around the steady state of
the system. We can rewrite each Heisenberg operator as a c-number steady-state value plus an
additional fluctuation operator with a zero-mean value, a = αs + δa,Qk = Qs

k + δQk, Pk =
P s

k + δPk . Inserting these expressions into the Langevin equations of equation (3), these latter
decouple into a set of nonlinear algebraic equations for the steady-state values and a set of
quantum Langevin equations for the fluctuation operators. The steady-state values are given
by P s

k = 0 (k = 1, 2), Qs
k = (−1)k

(
h̄ωc/Mk�

2
kL

)|αs |2, αs = E/(κ + i�), where the latter
equation is in fact a nonlinear equation determining the stationary intracavity field amplitude
αs , because the effective cavity detuning �, including radiation pressure effects, is given by

� = �0 +
ωc

L

(
Qs

1 − Qs
2

)
(8)

= �0 − h̄
(ωc

L

)2
|αs |2

(
1

M1�
2
1

+
1

M2�
2
2

)
. (9)

The exact quantum Langevin equations for the fluctuations are

δȧ = −(κ + i�)δa − i
ωc

L
(αs + δa) (δQ1 − δQ2) +

√
2κain, (10)

δQ̇k = δPk/Mk, k = 1, 2, (11)

δṖk = −Mk�
2
kδQk − γkδPk + (−1)kh̄

ωc

L
(αsδa

† + α∗
s δa) + δa†δa + MkWk, k = 1, 2.

(12)

From a physical point of view, the strong driving regime is the most relevant one. In this
regime, the intracavity amplitude is very large, |αs | � 1, and, as shown by equations (10)
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and (12), one has a large effective optomechanical coupling constant αsωc/L between the
field quadrature fluctuations and the oscillator. When |αs | � 1, one can safely neglect the
cavity field fluctuation operator δa with respect to αs in equations (10) and (12) and consider
linearized Langevin equations. Note that this amounts to linearize only with respect to the
cavity mode and not with respect to the mechanical oscillator, whose operators appear linearly
in the dynamical equations from the beginning and therefore are not approximated in the
linearized treatment.

It is evident that the cavity mode is coupled only to the relative motion of the two mirrors,
and it is therefore convenient to rewrite the above equations in terms of the fluctuations of the
relative and centre-of-mass coordinates, i.e.

δQcm = M1

MT

δQ1 +
M2

MT

δQ2, δPcm = δP1 + δP2, (13)

δQr = δQ2 − δQ1,
δPr

µ
= δP2

M2
− δP1

M1
, (14)

where MT = M1 + M2 and µ = M1M2/MT are the total and reduced mass of the two
oscillators. The linearized Langevin equations for these coordinates are

δȧ = −(κ + i�)δa + i
ωc

L
αsδQr +

√
2κain, (15)

δQ̇r = δPr/µ, (16)

δṖr = −µ�2
r δQr − γrδPr − µ

(
�2

2 − �2
1

)
δQcm

− µ

MT

(γ2 − γ1)δPcm + h̄
ωc

L
(α∗

s δa + αsδa
†) + µWr, (17)

δQ̇cm = δPcm/MT , (18)

δṖcm = −MT �2
cmδQcm − γcmδPcm − µ

(
�2

2 − �2
1

)
δQr − (γ2 − γ1) δPr + MT Wcm, (19)

where we have defined the centre-of-mass frequency �2
cm = (

M1�
2
1 + M2�

2
2

)/
MT , damping

rate γcm = (M1γ1 +M2γ2)/MT and Brownian noise Wcm = (M1W1 +M2W2)/MT , and also the
relative motion frequency �2

r = (
M2�

2
1 +M1�

2
2

)/
MT , damping rate γr = (M2γ1 +M1γ2)/MT

and Brownian noise Wr = W2 − W1. Thanks to these definitions, the centre-of-mass
and relative motion Brownian noise possess correlation functions analogous to those of
equation (7), with the corresponding damping rate and mass. The two noises are however
correlated in general, because

〈Wcm(t)Wr(t
′)〉 = 〈Wr(t)Wcm(t ′)〉 = h̄(γ2 − γ1)

MT

∫ ∞

−∞

dω

2π
e−iω(t−t ′)ω

[
coth

(
h̄ω

2kBT

)
+ 1

]
.

(20)

The above equations show that even though the cavity mode directly interacts only with the
relative motion, the three modes are all coupled because of the centre-of-mass–relative-motion
coupling, which is present whenever �1 	= �2 or γ1 	= γ2.

2.1. Equal frequencies and damping rates

The dynamics considerably simplify when �1 = �2 = � and γ1 = γ2 = γ . In fact, in such
a case �cm = �r = � and γcm = γr = γ and the centre-of-mass motion fully decouples
from the cavity mode and the relative motion, even if the masses are different. The centre of
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mass becomes an isolated quantum oscillator with mass MT and subject to quantum Brownian
noise, i.e.

δQ̇cm = δPcm/MT , (21)

δṖcm = −MT �2δQcm − γ δPcm + MT Wcm, (22)

while the relative position of the two mirrors and the linearized fluctuations of the cavity mode
form a system of two interacting modes described by the following linear Langevin equations:

δQ̇r = δPr/µ, (23)

δṖr = −µ�2δQr − γ δPr +

√
2h̄ωcαs

L
X + µWr, (24)

Ẋ = −κX + �Y +
√

2κXin, (25)

Ẏ = −κY − �X +

√
2ωcαs

L
δQr +

√
2κY in, (26)

where we have chosen the phase reference of the cavity field so that αs is real; we have
defined the cavity field quadratures X ≡ (δa + δa†)/

√
2 and Y ≡ (δa − δa†)/i

√
2, and

the corresponding Hermitian input noise operators Xin ≡ (ain + ain,†)/
√

2 and Y in ≡
(ain − ain,†)/i

√
2. Note that equation (23) coincides with the linearized equations of a Fabry–

Perot cavity with only one movable mirror with mass µ.
It is convenient to switch to dimensionless dynamical variables for the mechanical

oscillators. If we define

δQk =
√

h̄

Mk�
qk, δPk =

√
h̄Mk�pk, k = 1, 2, (27)

δQcm =
√

h̄

MT �
qcm, δPcm =

√
h̄MT �pcm, (28)

δQr =
√

h̄

µ�
qr, δPr =

√
h̄µ�pr, (29)

such that [qj , pk] = iδjk , either for j, k = 1, 2 or for j, k = r , cm; definitions (13)–(14)
become

qcm = r1q1 + r2q2, pcm = r1p1 + r2p2, (30)

qr = r1q2 − r2q1, pr = r1p2 − r2p1, (31)

where rk = √
Mk/MT , k = 1, 2. The quantum Langevin equations become in terms of these

dimensionless continuous variables (CV)

q̇cm = �pcm, (32)

ṗcm = −�qcm − γpcm + ξcm, (33)

q̇r = �pr, (34)

ṗr = −�qr − γpr + GX + ξr , (35)
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Ẋ = −κX + �Y +
√

2κXin, (36)

Ẏ = −κY − �X + Gqr +
√

2κY in, (37)

where we have defined the effective optomechanical coupling constant

G =
√

2h̄

µ�

αsωc

L
= 2ωc

L

√
Pκ

µ�ωL(κ2 + �2)
, (38)

which, being proportional to the square root of the input power, can be made quite large, and
the zero-mean-scaled Brownian noise operators ξr(t) and ξcm(t), with correlation functions〈

ξj (t)ξk(t
′)
〉 = δjk

γ

�

∫ ∞

−∞

dω

2π
e−iω(t−t ′)ω

[
coth

(
h̄ω

2kBT

)
+ 1

]
, (39)

where j, k = r , cm.

3. Stationary correlation matrix of the two mirrors

When the three-mode system is stable, it reaches a unique steady state, independently
from the initial condition. Since the quantum noises ξcm, ξr , X

in and Y in are zero-
mean quantum Gaussian noises and the dynamics is linearized, the quantum steady state
for the fluctuations is a zero-mean Gaussian state, fully characterized by its 6 × 6
correlation matrix (CM) V

(6)
ij = 〈ui(∞)uj (∞) + uj (∞)ui(∞)〉/2, where uT (∞) =

(q1(∞), p1(∞), q2(∞), p2(∞),X(∞), Y (∞)) is the vector of continuous variables’
fluctuation operators at the steady state (t → ∞). We are interested in the stationary reduced
state of the two mirrors, which is obtained by tracing out the cavity mode. This state is
obviously still Gaussian and fully characterized by the 4 × 4 matrix Vij formed by the first
four rows and columns of V

(6)
ij . The general form of V is quite simple. First of all it is

V12 = V34 = 0. In fact, since pj = q̇j /�, j = 1, 2, it is

V12 = 〈q1(∞)p1(∞) + p1(∞)q1(∞)〉
2

= 1

2�
lim
t→∞

d

dt
〈q2

1 (t)〉 = 0, (40)

and the same happens for V34. Moreover, thanks to the decoupling between the centre of mass
and relative motion it is V14 = V23 = 0, because

V14 = 〈q1(∞)p2(∞) + p2(∞)q1(∞)〉
2

= r1r2

2
[〈qcm(∞)pcm(∞) + pcm(∞)qcm(∞)〉

− 〈qr(∞)pr(∞) + pr(∞)qr(∞)〉]
= r1r2

2�
lim
t→∞

d

dt

[〈
q2

cm(t)
〉 − 〈

q2
r (t)

〉] = 0, (41)

and the same happens for V23. The final form of V is

V =




V11 0 V13 0
0 V22 0 V24

V13 0 V33 0
0 V24 0 V44


 , (42)

where

V11 = r2
1

〈
q2

cm

〉
st + r2

2

〈
q2

r

〉
st, V22 = r2

1

〈
p2

cm

〉
st + r2

2

〈
p2

r

〉
st, (43)
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V33 = r2
2

〈
q2

cm

〉
st + r2

1

〈
q2

r

〉
st, V44 = r2

2

〈
p2

cm

〉
st + r2

1

〈
p2

r

〉
st, (44)

V13 = r1r2
(〈
q2

cm

〉
st − 〈

q2
r

〉
st

)
, V24 = r1r2

(〈
p2

cm

〉
st − 〈

p2
r

〉
st

)
, (45)

that is, it depends upon the mass ratios rk and the four stationary variances 〈u2〉st ≡
limt→∞〈u2(t)〉, u = qcm, pcm, qr , pr .

3.1. Calculation of the stationary variances

The centre-of-mass and relative motion stationary variances can be obtained by solving
equation (32) and considering the limit t → ∞. Defining the six-dimensional vector of
variables vT (t) = (qcm(t), pcm(t), qr(t), pr(t), X(t), Y (t)), the vector of noises nT (t) =
(0, ξcm(t), 0, ξr (t),

√
2κXin(t),

√
2κY in(t)) and the matrix

A =




0 � 0 0 0 0
−� −γ 0 0 0 0

0 0 0 � 0 0
0 0 −� −γ G 0
0 0 0 0 −κ �

0 0 G 0 −� −κ




. (46)

Equations (32) can be rewritten in a compact form as v̇(t) = Av(t) + n(t), whose solution is

v(t) = M(t)v(0) +
∫ t

0
dsM(s)n(t − s), (47)

where M(t) = exp{At}. The system is stable and reaches its steady state when all the
eigenvalues of A have negative real parts so that M(∞) = 0. The stability conditions can be
derived by applying the Routh–Hurwitz criterion [26], yielding the following two nontrivial
conditions on the system parameters:

s1 = 2γ κ[�4 + �2(γ 2 + 2γ κ + 2κ2 − 2�2) + (γ κ + κ2 + �2)2] + �G2�(γ + 2κ)2 > 0, (48)

s2 = �(�2 + κ2) − G2� > 0, (49)

which will be considered to be satisfied from now on. If we consider the variables vj (t), we
can construct the stationary correlation matrix

Cij = 〈vi(∞)vj (∞) + vj (∞)vi(∞)〉
2

, (50)

which is the quantity of interest because C11 = 〈
q2

cm

〉
st, C22 = 〈

p2
cm

〉
st, C33 = 〈

q2
r

〉
st and

C44 = 〈
p2

r

〉
st. When the system is stable, using equation (47) one gets

Cij =
∑
k,l

∫ ∞

0
ds

∫ ∞

0
ds ′Mik(s)Mjl(s

′)
kl(s − s ′), (51)

where 
kl(s − s ′) = (〈nk(s)nl(s
′) + nl(s

′)nk(s)〉)/2 is the matrix of the stationary noise
correlation functions. Due to equation (39), the mirror Brownian noises are not delta correlated
and therefore do not describe in general a Markovian process. However, as we shall see,
mechanical entanglement is achievable only using oscillators with a very good mechanical
quality factor Q = �/γ . In this weak damping limit, γ → 0, the quantum Brownian noises
ξr(t) and ξcm(t) become delta correlated [27],

〈ξj (t)ξk(t
′) + ξk(t

′)ξj (t)〉/2 � δjkγ (2n̄ + 1)δ(t − t ′), (52)
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where n̄ = (exp{h̄�/kBT } − 1)−1 is the mean thermal excitation number, and one recovers
a Markovian process. Using the definitions of Xin and Yin and equation (6), we finally get

kl(s − s ′) = Dklδ(s − s ′), where

D =




0 0 0 0
0 γ (2n̄ + 1) 0 0
0 0 κ 0
0 0 0 κ


 . (53)

As a consequence, equation (51) becomes

C =
∫ ∞

0
dsM(s)DM(s)T , (54)

which, when the stability conditions are satisfied so that M(∞) = 0, is equivalent to the
following equation for the CM:

AC + CAT = −D. (55)

Equation (55) is a linear equation for C and it can be straightforwardly solved. The centre of
mass is decoupled from the other two modes, and equation (55) trivially gives

C11 = C22 = 〈
q2

cm

〉
st = 〈

p2
cm

〉
st = 1

2 + n̄. (56)

The relative motion is instead coupled with the cavity mode and consequently the final
expression of the stationary variances is much more involved. One has

C33 = 〈
q2

r

〉
st = 1

2 + bq + dqn̄, (57)

C44 = 〈
p2

r

〉
st = 1

2 + bp + dpn̄, (58)

where

bp = [s1]−1G2κ{�2(γ + κ) + κ(γ κ + κ2 + �2) − ��(γ + 2κ)}, (59)

dp = 1 − [s1]−12G2κ��(γ + 2κ), (60)

bq = [2s1s2]−1G2{2κ(�2 + κ2){[�2 + (γ + κ)2](κ� + γ�)

+ �2(γ + κ)(� − 2�)}�G2�2(γ + 2κ)[�γ − κ(� − 2�)]}, (61)

dq = 1 + [s1s2]−1�G2[s1 − 2γ κ�2(�2 + 2γ κ + 4κ2) − 4κ2�2(�2 + κ2)]. (62)

4. Conditions for stationary entanglement

Simon’s separability positive partial transpose (PPV) criterion is necessary and sufficient for
bipartite Gaussian CV states [24]. It assumes a particularly simple form for the CM of the
two mirrors of equation (42). In fact, after some algebra, one gets the following necessary and
sufficient condition for the presence of mechanical entanglement between the two mirrors in
the stationary state:[〈

q2
r

〉
st

〈
p2

cm

〉
st − 1

4

] [〈
p2

r

〉
st

〈
q2

cm

〉
st − 1

4

]
<

(
1 − 1

η

) [〈
q2

cm

〉
st

〈
p2

cm

〉
st − 1

4

] [〈
q2

r

〉
st

〈
p2

r

〉
st − 1

4

]
,

(63)

where we have defined η = 4r2
1 r2

2 = 4µ/MT . For very different masses η → 0 and the right-
hand side of equation (63) tends to −∞, i.e. the criterion is never satisfied and the mirrors
are never entangled. It is therefore evident that stationary entanglement is better achieved for
equal mirrors, i.e. η = 1, when the right-hand side of equation (63) is equal to zero and the
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necessary and sufficient entanglement condition becomes equivalent to a ‘product’ of sufficient
criteria analogous to those derived in [8, 25], that is,

〈
q2

r

〉
st

〈
p2

cm

〉
st < 1/4 or

〈
p2

r

〉
st

〈
q2

cm

〉
st < 1/4.

Since the centre of mass of the two mirrors is unaffected by the optomechanical coupling (see
equation (56)), this means that the two mirror vibrational modes are entangled if and only if
their relative motion is sufficiently squeezed, i.e.〈

q2
r

〉
st or

〈
p2

r

〉
st <

1

2(1 + 2n̄)
. (64)

This equation provides an intuitive picture of how the entanglement between the two mirrors is
generated by the radiation pressure of the light bouncing between them. If the cavity is strongly
driven, the radiation pressure coupling becomes very large and the fluctuations of the mirror
relative motion can be significantly squeezed. If such a squeezing is large enough to overcome
even the thermal noise acting on the centre of mass, equation (64) guarantees that the two
mirrors are entangled. Equation (64) also points out the main limit of the proposed scheme:
the mirrors’ centre of mass is not affected by radiation pressure and cannot be squeezed. This
suggests that the generated entanglement is not robust against temperature because satisfying
equation (64) becomes prohibitive at large n̄.

One can quantify the stationary mechanical entanglement by considering the logarithmic
negativity EN [28], which in the CV case EN can be defined as [29]

EN = max[0,−ln 2ν−], (65)

where ν− is given by

ν− ≡ 2−1/2[(V ) − ((V )2 − 4 det V )1/2]1/2, (66)

with (V ) ≡ det N1 + det N2 − 2 det N12 and we have used the 2 × 2 block form of the CM

V ≡
(

N1 N12

NT
12 N2

)
. (67)

Therefore, a Gaussian state is entangled if and only if ν− < 1/2, which is equivalent to
Simon’s necessary and sufficient entanglement criterion for Gaussian states [24] of equation
(63), and which can be written as 4 det V < (V ) − 1/4. In the case of the stationary matrix
V of equation (42), one has

det V = 〈
q2

r

〉
st

〈
p2

r

〉
st

〈
q2

cm

〉
st

〈
p2

cm

〉
st (68)

(V ) = (1 − η)
[〈
q2

r

〉
st

〈
p2

r

〉
st +

〈
q2

cm

〉
st

〈
p2

cm

〉
st

]
+ η

[〈
q2

r

〉
st

〈
p2

cm

〉
st +

〈
q2

cm

〉
st

〈
p2

r

〉
st

]
. (69)

Therefore, under the most convenient condition for entanglement, i.e. identical mirrors ⇔ η =
1, one has (V ) = 〈

q2
r

〉
st

〈
p2

cm

〉
st +

〈
q2

cm

〉
st

〈
p2

r

〉
st, yielding

ν− = min

{√〈
q2

r

〉
st

〈
p2

cm

〉
st,

√〈
q2

cm

〉
st

〈
p2

r

〉
st

}
, (70)

so that in this case of equal masses, the logarithmic negativity assumes the particularly simple
form

EN = max

{
0,−ln

[
2
√〈

q2
r

〉
st

〈
p2

cm

〉
st

]
,−ln

[
2
√〈

q2
cm

〉
st

〈
p2

r

〉
st

]}
. (71)

Using equations (56)–(58) and (71), one has stationary entanglement if one of the two following
conditions is satisfied:

bq + dqn̄ < − n̄

2n̄ + 1
, (72)
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Figure 2. Logarithmic negativity EN as a function of the normalized detuning �/� in the case
of an optical cavity of length L = 1 cm, finesse F = 1.9 × 105, driven by a laser with wavelength
1064 nm and power P = 50 mW. The identical movable mirrors have a frequency �/2π =
10 MHz, damping rate γ = 3 × 105 s−1, mass m = 100 ng and their temperature is T = 0.
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Figure 3. Logarithmic negativity EN evaluated at � = �opt � 0.8 � (see equation (74)) as a
function of temperature. The other parameter values are the same as in figure 2.

bp + dpn̄ < − n̄

2n̄ + 1
, (73)

which, as expected, are better satisfied in the zero temperature limit, n̄ → 0, since dq, dp � 0
whenever the stability conditions are satisfied (otherwise one could have negative variances at
large enough temperatures).

These two equations lead us to the main result of the paper, i.e. it is possible to realize an
entangled stationary state of two macroscopic movable mirrors of a classically driven Fabry–
Perot cavity. However, such a stationary mechanical entanglement turns out to be fragile
with respect to temperature, as it can be easily grasped from equations (72)–(73). This is
illustrated in figures 2–3, where we have considered a parameter region very close to that
of recently performed experiments employing optical Fabry–Perot cavities with at least one
micromechanical mirror [11–14]. Figures 2–3 refer to the case of an optical cavity of length
L = 1 cm, finesse F = 1.9 × 105, so that κ � 5 × 105 s−1, driven by a laser with wavelength
1064 nm and power P = 50 mW. The two identical mechanical oscillators have an angular
frequency �/2π = 10 MHz, damping rate γ = 3 × 105 s−1 and mass m = 100 ng. Figure 2
refers to the zero temperature limit and shows that stationary entanglement is present only
within a small interval of values of � around � � �opt, where

�opt = �
γ + 2κ

2γ + 2κ
. (74)

This value is essentially the optimal value for the detuning for achieving entanglement. This
can be understood from the expression of

〈
p2

r

〉
st. In fact, at zero temperature entanglement
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is obtained when bp < 0 (see equation (73)), which is satisfied when the numerator of
equation (59) is negative, since s1 > 0 due to stability. This condition is obtained by
considering the minimum of the second-order polynomial in � in the numerator and by
imposing that it is negative. The minimum value of this polynomial is obtained just at
� = �opt, and it is negative when

γ� > 2κ(γ + κ). (75)

Therefore, � = �opt and equation (75) are sufficient conditions for achieving entanglement
at zero temperature. This parameter regime is the optimal for entanglement because when
� � �opt � �, s1 is also close to its minimum value, implying therefore a large negative
value of bp (see equation (59)) and also a value of dp very close to zero (see equation (60)),
which means an improved robustness of entanglement with respect to temperature. In figure 3
we study the resistance to thermal effects by plotting EN evaluated at the optimal detuning, i.e.
corresponding to the maximum of figure 2, versus temperature. We see that this entanglement
vanishes for T > 100 µK. This behaviour is valid in general, even in parameter regions
different from those of figures 2, 3: whenever one finds a regime with a nonzero stationary
entanglement, this entanglement quickly tends to zero for increasing temperatures. As
discussed above (see below equation (64)) this is due to the fact that in this simple Fabry–
Perot cavity system, the mirror’s centre-of-mass is unaffected by the radiation pressure of the
cavity mode and remains at thermal equilibrium. One could achieve a larger and more robust
entanglement by adopting the double-cavity set-up considered in [17], where the optical mode
of the second, ‘folded’ cavity couples just to the centre of mass of the mirrors of interest,
which is then also squeezed, independently from the relative motion. In this latter scheme,
therefore, robustness against temperature is achieved at the price of a much more involved
experimental set-up.

Equation (71) shows that mechanical entanglement at zero temperature could be realized
as well when

〈
q2

r

〉
st < 1/2. However, it is possible to see through numerical calculations that

this condition is much more difficult to realize with respect to
〈
p2

r

〉
st < 1/2. This fact is not

easily seen from the analytical expressions of bq and dq (equations (61)–(62)), which are more
difficult to analyse with respect to those of bp and dp (equations (59)–(60)).

5. Comparison with other proposals and experimental detection of the entanglement

It is interesting to compare the present proposal with other recent schemes for entangling
two micro-mechanical mirrors, especially with [8, 9, 17, 18], which are all based on the
optomechanical coupling provided by the radiation pressure. Mancini et al [8, 9, 17]
considered the steady state of different systems of driven cavities; Mancini et al [8] focused
on two mirrors of a ring cavity and considered the situation in the frequency domain. Zhang
et al [9] assumed to drive two independent linear cavities with two-mode squeezed light, and
stationary mechanical entanglement is achieved by transferring the entanglement of the two
driving beams to the end mirrors of the two cavities.

We have already partially compared the present scheme with that of [17], to which it is
strongly related. In fact, the double-cavity scheme of [17] coincides with the single Fabry–
Perot cavity scheme considered here when the ‘folded’ cavity of [17] is not driven. The
additional folded cavity couples to the centre of mass of the two vibrational modes and if it
is appropriately driven by squeezed light, it is able to transfer this squeezing to the centre
of mass. This has the advantage of increasing the entanglement and making it more robust
against temperature (see equation (71)), but this is obtained at the price of a more involved
apparatus, requiring the preparation of an additional ring cavity and the use of nonclassical
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driving. Moreover, Pinard et al [17] evaluated the stationary state of the two mechanical
modes approximately, by considering the resonant case � = � and solving the dynamics of
the system only in the limit when � is much larger than the other parameters, G, κ , so that
fast terms rotating at frequency � can be neglected in the equations of motion. In this limit,
Pinard et al [17] finds that the steady state of the two mirrors is entangled only if the input field
is squeezed, while it is never entangled for a classical coherent input. Here we determine the
steady state of the system exactly in the Markovian limit of weak mechanical damping and we
find that when fast terms rotating at frequency � cannot be neglected, one can entangle the
mirror even using classical driving. As expected, it is possible to check that the present exact
solution reproduces the results of [17] under the same limiting conditions (no input squeezing,
large mechanical frequency and no folded cavity). In fact, if we consider � = � � G, κ, γ

in equations (59)–(62), one gets

bp = bq � 0, (76)

dp = dq = γ (G2 + 2γ κ + 4κ2)

(γ + 2κ)(G2 + 2γ κ)
, (77)

so that 〈
q2

r

〉
st = 〈

p2
r

〉
st = 1

2
+ n̄

γ (G2 + 2γ κ + 4κ2)

(γ + 2κ)(G2 + 2γ κ)
� 1

2
, (78)

coinciding with equation (23) of [17] in the case of no input squeezing, and implying absence
of mechanical entanglement. Therefore we see that the ‘resonance’ condition � = � is
very close to the optimal condition for generating mechanical entanglement, and that if
one leaves the regime of very large mechanical frequencies � � G, κ, γ , one can achieve
stationary mechanical entanglement even without input squeezing. In fact, the parameter
regime considered in figures 2 and 3 corresponds to � � G � κ � γ .

Another recent proposal employing radiation pressure effects for entangling two vibrating
micro-mirrors is [18], where the radiation pressure of an intense laser field first generates
optomechanical entanglement between a mirror vibrational mode and an optical sideband.
Such an entanglement is then swapped to two separated micro-mechanical oscillators via
homodyne measurements on the optical modes, representing Bell measurements in this
continuous variable setting. In this latter proposal, macroscopic mechanical entanglement
is generated when the homodyne measurement is performed and it is therefore a transient
phenomenon, with a lifetime which is severely limited by the mirror thermal reservoir [18].
In the present scheme, in contrast, mechanical entanglement has an infinite lifetime because it
is generated at the steady state, and therefore its experimental detection becomes much easier.

We also note that the system studied here is similar to that considered in [15], where a
Fabry–Perot cavity with only one vibrating mirror is considered. In [15] a quantum Langevin
treatment analogous to the one adopted here is used to quantify the amount of bipartite
entanglement between the vibrational mode of the mirror and the intracavity field at the steady
state of the system.

We finally discuss the experimental detection of the generated mechanical entanglement.
The measurement of EN at the steady state is quite involved because one has to measure all
the ten independent entries of the steady-state correlation matrix V . This has been recently
experimentally realized (see [30] and references therein) for the case of two entangled optical
modes at the output of a parametric oscillator. Instead, one does not have direct access to
the vibrational modes and therefore it is not clear how to measure them. However Vitali
et al [15] showed that, apart from additional detection shot noise, the motional state of the
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mirror can be read from the output of an adjacent Fabry–Perot cavity, formed by the mirror
to be detected and another ‘fixed’ (i.e. with large mass) mirror. In fact, it is possible to adjust
the parameters of this second cavity so that both position and momentum of the mirror can
be experimentally determined by homodyning the cavity output light [15]. In particular, if
the readout cavity is driven by a much weaker laser so that its back-action on the mechanical
mode can be neglected, its detuning �2 is chosen to be equal to the mechanical frequency �,
and its bandwidth κ2 is large enough so that the cavity mode adiabatically follows the mirror
dynamics; the output of the readout cavity aout

2 is given by

aout
2 = i

G2√
κ2

b + ain
2 , (79)

where b is the annihilation operator of the vibrational mode, G2 is the effective optomechanical
coupling of the readout cavity (see equation (38)) and ain

2 is the input noise entering the readout
cavity. Therefore using a readout cavity for each mirror, changing the phases of the two local
oscillators and measuring the correlations between the two readout cavity output one can
then detect all the entries of the correlation matrix V and from them numerically extract the
logarithmic negativity EN by means of equations (65) and (66).

6. Conclusions

We have considered a system formed by a linear cavity with two vibrating mirrors, driven
by an intense classical light field. The two mirror vibrational modes interact, thanks to the
radiation pressure of the light bouncing between them. We have determined the steady state
of the system and we have seen that, in the case of identical mechanical oscillators, the
two vibrational modes become entangled if the cavity detuning is close to the mechanical
frequency. The resulting mechanical entanglement is however quite fragile with respect to
temperature and this suggests that, in order to generate macroscopic mechanical entanglement
which is more robust with respect to thermal effects, it is convenient to drive the cavity with
nonclassical light (see e.g. [17].)
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